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The Transition State Method in Chemical Kinetics. 
Contribuution to a Disczlssion * on The Transition State in Reaction Kinetics, held by the 

Chemical Society on February 4th, 1937. 
By C. N. HINSHELWOOD. 

THERE can be no fundamental difference between the results of a kinetic treatment and 
those of a thermodynamic treatment. The object of the present contribution is to attempt 
to show that the transition state method and the kinetic method of treating reaction 
velocity problems are very much more similar than they might appear at first sight. 
Neither can be said to stand in opposition to the other. The thermodynamic method 
frequently has the advantage of a greater formal elegance of its equations and a greater 
generality. On the other hand, this quality is accompanied by the corresponding defect 
that the magnitudes operated with are often quite inaccessible to experimental control, and 
further, that the plausibility of certain assumptions cast in a mathematical form is less easy 
to assess at its face value than it would be with the corresponding assumptions of the 
alternative method. The most satisfactory attitude is to be willing to derive all the inform- 
ation possible by the impartial consideration of problems from both points of view. The 
interpretation of kinetic relations in terms of thermodynamics and vice versa is in any case 

* A few additional remarks are added to  what was said in the discussion itself. 



636 Hinshelwood : Tkze Transition Stnte Method i~z Chemical Kinetics. 

a process worth while for its own sake, and seldom fails to enrich one's understanding of the 
workings of Nature. 

In the following, I shall consider a number of problems from both points of view, and 
the comments will indicate what I consider to be the relative strengths and limitations of 
the two methods in various connexions. 

The kinetic method is based upon the consideration of the equation, Reaction velocity 

energy, and P a factor expressing the probability that other conditions, such as the orient- 
ation of all the molecules concerned, the relative motions of their atoms and electrons, and 
a favourable disposition of the surrounding solvent molecules, are fulfilled. The simple 
exponential form of this expression has to be modified if the activation energy resides in a 
considerable number of degrees of freedom. The extra temperature-variable terms could 
be included in P, which would then be temperature-dependent : whether or not we do SO 
include them, or whether we replace the exponential by a more complicated expression and 
call P constant, is a matter of convenience only.* 

To calculate 2' we must know the collision diameters : the collision diameter is obviously 
not an absolutely sharply defined magnitude. But there is good sense in taking it as the 
value derived from viscosity (momentum transfer) experiments, and then enquiring what 
further conditions must be fulfilled. This is equivalent to assuming that we have a normal 
size for the transition state. The diameter of the transition complex has to be assumed in 
making calculations by the thermodynamic method also; and unless we assume it to be 
normal we do not know what value to assign to it. The diameter difficulty comes equally 
into both methods. 

The 
statistical theory of equilibria is employed to calculate the equilibrium constant, K ,  of a 
transition complex of the reactants; K is then multiplied by a thermal velocity v and by 
a numerical factor of the order f ,  giving +Kv for the rate. K is expressible as a product of 
partition functions for the activated state divided by a product of partition functions for 
the reactants, and the whole is multiplied by eeRIRT. 

It is instructive to compare the calculation of a reaction velocity by the two methods in 
the simplest possible case, and then to see in what manner the difficulties increase as we pass 
from the simplest to more complex cases. We shall see that they increase in a more or less 
parallel manner in both. 

From the point of view of the kinetic theory, the simplest assumption that we can make 
is that the activation energy resides in two square terms, and that all the collisions with 
enough energy lead to reaction. 

- - PZe-E/RT, where 2 is the number of encounters between the reactants, E the activation 

The transition state method sets out to calculate reaction velocities as follows. 

For v, Eyring uses kTJh. 

This gives for the rate at unit concentrations 

If we wish to make the calculation for more complex cases we must make assumptions 
about the number of degrees of freedom in which the activation energy resides, and about 
the orientations, and about the internal phases of the molecular motions, and so on. In 
general, we do not know what to assume about these, and all that we can do is to investigate 
whether they appear to change in the right direction when we pass from'one example to 
another. 

Turning now to the transition state method, we must write down K. For the transition 
* The objection has been made that the kinetic method assumes P to be a constant, whereas the 

thermodynamic method shows it to be related to an entropy, which, being expressible as the integral 
of specific-heat terms divided by temperature, may be temperature-variable. This objection amounts 
to  comparing the first approximation of one theory with the second approximation of another. For 
if the specific-heat terms are of importance, the activation energy will vary with temperature. Variation 
of activation energy with temperature means that there are different probabilities of reaction for different 
states within the range of what might be called the spectrum of activated states. In  this case the 
simple exponential form no longer expresses the reaction velocity : or, if it is made to do so formally, 
then a temperature-variable residuum has to be included in P .  This state of affairs has long been 
familiar in connexion with theories of unimolecular reactions. 
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complex we shall have a product of three translational partition functions, one rotational 
(3-dimensional) partition function, and a whole series of vibrational partition functions ; 
for the reactants, we have a product of three translational partition functions for each 
molecule concerned, a rotational function for each, and a whole series of vibrational ones. 
In  the simplest case, say the union of two atoms to form a molecule, the expression for the 
K reduces to  the form TZ . RJT6, where T: means a product of three translational partition 
functions for the activated state. 

Putting in the values for the different kinds of partition function, and multiplying by 
kT/h and by e-E/RT,  we obtain for the rate. 

2n(m, + m,)kT 2 8n21kT kT 

(2nm, kT)a (2xm2 kT)i 

~- 
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We must now put in the value for the moment of inertia. If this is written as po2,  where 
B is the sum of the normal radii of the reactants, then we have made an assumption not very 
different from that of the simple kinetic theory. If we wish to assume a very different 
value, then we are doing something which must be equivalent t o  making the assumption of 
an abnormal target area in the-kinetic theory. In  one method as in the other it is difficult 
to  know what value we should take, if for any reason we believe the normal one to be 
inadmissible. There will be, of course, small differences according to whether we take c 
to be the diameter of the product or that of the unchanged pair of reactants, but it is no 
exaggeration to say that the difference is well within the limits of the other uncertainties. 
Taking cs as the normal value, we obtain for the rate the expression : 

(8nkT)a (-----)' mM.l+ m2 . I 
*I m2 

Since I = - m A . c 2 J  this becomes 
Wl+ m2 

which agrees with that obtained the other way. This is a very neat example of the inter- 
relation of kinetic theory and thermodynamics. 

We 
obtain products involving a number of vibrational and rotational partition functions for the 
activated state divided by a similar product for the reactants. The closer study of these 
products reveals several interesting things. If we are dealing with an association reaction 
there will be a number of vibrational partition functions for the activated state divided by 
rotational functions for the reactants. In  general, the numerical values of the former are 
smaller than those of the latter; the result is a small value of K and a correspondingly 
small reaction rate. The kinetic inter- 
pretation of this is clearly that in an association reaction rotational degrees of freedom 
disappear and new linkages appear with associated vibrations, and that this process can 
only take place when the mutual orientations of the reactants are suitable, and when the 
relative motions of various atoms are also suitable for the creation of the new bonds. Each 
method of statement illuminates the other. As regards the possibility of making quantit- 
ative calculations, from the kinetic point of view it is evident at once that to  specify the 
orientations and phases correctly is a very difficult task. To write down the appropriate 
partition functions may sound formally a matter capable of treatment with greater preci- 
sion. But this can hardly be true in actual practice. The vibrational partition function 
depends upon the frequency of the vibration in question, and can easily vary by one or two 
powers of 10. A product of several can thus vary by many powers of 10. The value of 
the frequency depends upon the strength of the binding, and precisely in an activated 
complex, where some bonds are being broken and others formed, we are likely to  be very 
much in the dark as to the appropriate values to take. It is probably not unfair to say that 

In  more complicated cases the partition products do not reduce to the simple form. 

This corresponds to a small value of the factor P. 

T T  
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our chances of writing down the correct values of the partition functions correctly are about 
the same as those of specifying the orientations and phases correctly. 

A point which is relevant here is the question of the identity of the two molecules which 
constitute the transition complex in a bimolecular reaction. I t  may be said that the 
collision theory postulates that their identity is preserved : this, however, is hardly to be 
insisted on, since we postulate for reaction a state of affairs where the energy exceeds E ,  
where the orientation of the two molecules is between certain limits, and where the phase of 
their internal motions is also defined. We thus contemplate a structure as specialised as 
the new species which the thermodynamic method calls the transition state. 

In the simplest of cases most of the vibrational degrees of freedom of the reactant 
molecules might persist more or less unchanged in the transition complex. The corre- 
sponding partition functions in the numerator and the denominator of K would cancel. 
In this case we should be justified in saying that these internal degrees of freedom ought 
not to be invoked in explaining the reaction rate. But in many cases the activation process 
must be rather complex : and several, or even many, degrees of freedom in the activated 
complex possess frequencies very different from those of the normal reactants. If the 
frequencies are very much smaller, which corresponds to a great loosening of the binding, 
then the corresponding product of partition functions becomes very great. This corresponds 
to a large value of P. Here there seems to be no reason why a number oi degrees of freedom 
should not contribute to the activation energy, as in the well-known theories of uni- 
molecular react ions. 

These reflexions arise in an interesting way in the question of the effect of solvation on 
reaction velocity in solution. I t  has been pointed out that if the transition state is more 
solvated than the reactants, the temperature-independent factor in the reaction velocity 
will tend to be small, and vice versa. This follows from considerations of the entropy of 
activation. If the activated 
state is more solvated, it means that the actual reaction process involves the collecting 
round the reactants of the appropriate number of suitably orientated solvent molecules. 
The probability of this is small so that P is small. In the converse case we start with 
solvated reactants : by hypothesis they must become desolvated in the process of activ- 
ation. From the thermodynamic point of view, the entropy increases when the ordered 
solvated systems pass into the disordered scattered components with their independent 
translational and rotational energies. The activation process involves the loosening of the 
solvated molecules. The frequencies of the links binding them to the reactants become 
very small in the activated state : this makes the partition function product great, and 
P great. Kinetically, P is great because the very necessity for loosening the solvate appen- 
dages involves the placing of energy in many links ; and this, as in the unimolecular reaction 
theories, causes the expression giving the activation rate to be greater than Ze-E'fil' by a 
large factor. 

As I have been invited to contribute to this discussion, I will state my personal view in 
concluding this section, that the great value of the transition state method is in causing us 
to think more deeply about the inter-relation of thermodynamic and kinetic magnitudes, 
rather than in providing us with an essentially more accurate calculus. I t  must certainly 
be said that sometimes the answer to a problem may be seen more easily from one point of 
view than from the other : we can then translate the answer into the language which we 
prefer. 

Another field of usefulness of the transition state method is even more directly thermo- 
dynamical. The transition state is regarded as a definite molecular species possessing 
assignable thermodynamic properties, so that the various thermodynamic relations of 
common utility can be applied to the equilibrium constant K ,  enabling one to predict the 
influence of various factors on rates of reaction. 

This leads to many elegant relations, which are formally more satisfying than any 
which a direct kinetic approach could yield. On the other hand, these relations involve the 
assignment of values to thermodynamic properties of the transition state, and this is only 
possible if we know a good deal about the transition state already. In  view of the fact that 
we do not in general know a great deal about the transition state, it is probably best to invert 

The corresponding kinetic statements seem to be as follows. 
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the obvious procedure, and to use empirical facts about reaction velocity to discover the 
thermodynamic properties of the transition state. This may lead to valuable general- 
isat ions. 

One of these may be mentioned as particularly suitable for this method of treatment. 
Polanyi and Evans, from a study of the influence of pressure on reaction velocity, justify the 
conclusion that the volume of the transition state is intermediate between that of the 
reactants and that of the products. 

For example, we know 
that the energy of the transition state is not intermediate between that of the reactants and 
products. When we are thinking of assigning values to  thermodynamic properties of the 
transition state on the basis of analogy with ordinary molecular species, we must remember 
that the properties of the latter represent averages over the whole of configuration space, 
while those of the former refer to  limited and specialised regions only. Thus it would seem 
dangerous to apply empirical laws about solubility, or about activity coefficients to the 
activated state, without special investigations to justify such a procedure. (The fact that 
the various Brarnsted activity coefficient relationships hold is no answer to this demand for 
caution. The Brarnsted relation refers to the influence of Coulomb forces in ionic reactions : 
nobody would suppose that the total charge on a transition complex is other than the sum 
of the charges on its constituents.) 

To continue the comparison of the two methods, we will now consider a special problem, 
namely, that of the logarithmic relation between velocity constants of certain series of 
related reactions. 

If we have two series of reactions with velocity constants kIW, klb . . . and k,", kzb . . . , 
all members of series I and all members of series 2 being chemically analogous among them- 
selves respectively, and the members a, b . . . of a given series differing in the structure 
of one or other of the reactants or in the substituents present, then we may find a relation 
of the following form : 

Other cases might be equally simple : some must be less so. 

log k ,  = a log k ,  + const. . . . . . . . . (1) 

where CL is the same for all the members of the series a, b . . . . For example, such a 
relation may be found by plotting the logarithm of the velocity constant for the hydrolysis 
of benzoic esters with a series of nuclear substituents against log k for the benzoylation of 
aromatic amines with the same series of substituents. 

Another form which the relation may take is 

log k = a log K + const. 

where log k refers to the velocity constant of a reaction and log K to the equilibrium con- 
stant of another reaction in which one of the reactants can participate. The best known 
example of this kind is the Brransted relation between the catalytic coefficient for the action 
of a series of acids on a given substrate and the dissociation constant in water of the same 
series of acids. 

Log K is proportional to the free energy of the reaction, and log k can be regarded as 
proportional to the free energy of the reaction by which the reactants pass to the transition 
state. If we introduce the thermodynamic equation d log k ldx  = (pl - PT)/RT where 
P is the differential coefficient of the free energy with respect to some variable x, we can 
connect the experimental relations referred to above with the thermodynamic properties 
of the transition state by a simple algebraical elimination. 

To account for the linear logarithmic relations we must assume, first, that all the various 
p's are constants, and secondly, that if the influence of change in structure or substituents 
is represented by a parameter x, then the ratio (x for reaction l)l(x for reaction 2) is a 
constant for all the members a, b . . . of the series. In  other words, we translate the 
experimental relationship into a statement of the kind that certain thermodynamic quan- 
tities maintain a constant ratio throughout a series. When we have seen this we have 
tidied our ideas. The only danger to guard against is the introduction of such a statement 
as a self-evident truth, which we may be tempted to do simply because we have not enough 
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intuitive feeling about the quantities in question to  see how much assumption such a state- 
ment may contain. 

Writing the reaction rate in the form 

log k = log PZ - E/RT 
we may see what the corresponding assumptions of the collision theory must be if equation 
(1) is to  hold. For variations among members of a given series, we have 

A log k = A log PZ - AE/RT.  

Two cases arise. In the simplest, PZ is constant for a given series, and equation (1) 
simply requires AE,.= aAE,. Since PZ often remains nearly constant through a series, 
this case is of some importance, and is worth examining in more detail. Suppose we are 
studying the effect of the same series of substituents on two reactions. Let us suppose 
schematically that one particular bond in each type of molecule is principally ,influenced by 
the substituents, their effect on the rest of the molecule bcing in the first approximation 
negligible for the purpose of the reaction. If in one case the bond in question is a strong one 
requiring considerable activation while in the other case it is very weak or requires no 
activation, we may evidently have AE2 finite but AE, nearly equal to zero, i.e., 01 = 0. 
At the other extreme we shall have the bond of approxiinately equal strength and requiring 
the same amount of activation in each reaction and AE, = AE, with 0: = 1. In between 
we shall have fractional values of a. The condition that the fractional value shall be a 
constant for the series is that the effect of the substituent on the bond strength shall not 
be an absolute magnitude but one proportional to the original strength of the bond. 
Alternatively, we may suppose that AE, is much smaller than AE, because the effect of the 
substituent is not wholly transmitted to the part of the molecule where it will influence 
the activation energy; in this case we must assume, in order to arrive at  a constant 01, 

that a constant fraction of the maximum effect is transmitted for all members of the series. 
These interpretations are to be compared with the thermodynamic statements made 

above. They are not in themselves more or less probable than those. They have the 
disadvantage of being less general, but the advantage of being more easily appraised 
or verified. 

Alkaline hydrolysis of benzoic Benzoylation of nuclear- Benzoylation of aniline with 
Sub- esters in 85% alcohol. substituted anilines. substituted benzoyl chlorides. 

stituent. (Zngold and Nathan.) (Williams and Hinshelwood .) 
Me ........... 18,200 6,800 7 800 
H ............ 17,700 7,350 7350 
NO, ......... 14,500 11,800 5900 
c1 ............ 16,800 7,600 7000 

The above table gives the activation energies for three reactions influenced by para- 
substituents in the benzene nucleus. The figure shows that the variations in activation 
energy may well be nearly proportional to one another, and that the values of AE decrease 
in the order : substituted amines, esters, substituted acid chlorides. This may well be 
due to the fact that the transmission of the effect of the substituent is less efficient in the 
case of the amines than with the esters, while with the acid chloride the effect is produced in 
a molecule which does not in any case need much activation, most being required in the 
other reaction partner. 

When PZ varies considerably in the series of reactions, the matter is more complicated. 
In order to preserve relation (1) we most simply assume that A log P,Z, = 01h log P,Z,. 
There are examples where in a series of reactions log PZ increases linearly with E ,  so that 
A log Y,Z, = plAEl and A log P2Z2 = p,AE,, and we now have p1 = p, In other words, 
the at the moment unknown factor which makes PZ increase with E must be one operating 
equally in the case of both series of reactions. In many cases p tends to  zero, and it must 
of course be remembered that the smaller p, the less accurately need pl = p, for relation (1) 
to be fairly well obeyed. An interesting special case must 'be mentioned here. At least 
one example is known in which there are rather irregular, though not very marked, varia- 
ations in PZ in a series of basic cataIyses, and the Brnrnsted relation is obeyed with great 
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accuracy. The deviations of PZ from constancy seem therefore to be due to a factor which 
affects the dissociation of an acid and its catalytic power equally. An abnormally great PZ 
for a given acid of the series means that the reaction goes more easily than we should 
expect from the activation energy. Since the Brransted relation is obeyed, we infer that 
that same acid also has an abnormally great tendency to give up a proton to water. If we 
attribute any anomalous behaviour to that part of the reaction mechanism connected with 
the giving up of the proton, rather than to any other kind of activation of the reaction 
partner, then we can see how the anomaly may show itself in the P-E relation while not 

appearing in the Brarnsted relation. An examination of various facts from this point of 
view can provide clues to the nature of P-E correlations. 

The law connecting the exponential and non-exponential terms of the reaction velocity 
equation will not be dealt with further here, as it is the subject of another communication 
from Fairclough and the author (this vol., p. 538). 

Nothing has so far been said about the types of reaction to which the transition state 
method is applicable. It is no criticism of the method itself to mention that it can hardly 
be applied to chain reactions, or t o  reactions in which removal of energy from the products 
is a rate-determining factor. But the wide-spread occurrence of, at least, the former of 
these two categories shows that special investigation of each given example is necessary. 




